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Abstract

We examine the channels and efficacy of monetary policy at the
zero lower bound (ZLB) through the lens of various shadow rate mod-
els. Our key methodological contribution is to extend the discretiza-
tion filter to incorporate missing observations. This allows us to esti-
mate shadow rate models that both incorporate survey forecasts and
allow for departures from rational expectations. Although the models
disagree about the level of the shadow rate and the duration of the
ZLB in real time, they are consistent in attributing most of the effects
of major Federal Reserve policy announcements to changes in term
premia. We estimate small macroeconomic effects of shocks to the
shadow rate relative to prior estimates, but this is due to differences
in the sample, not the shadow rate estimation.
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1 Introduction

Between 2008 and 2015, the Federal Reserve lowered its policy interest rate
to the zero lower bound (ZLB) and employed new tools — large scale asset
purchases (LSAPs) and forward guidance — to influence long-term interest
rates. The consensus among policymakers is that these new tools were ef-
fective (Caldara et al. (2020)). However, the channels through which they
operated are still not well understood.

The nonlinearity resulting from the ZLB makes it difficult to separately
identify interest-rate expectations from term premia in standard term-structure
affine models. Despite the challenges of identifying how these new policies
worked, the Federal Reserve employed similar strategies in response to the
COVID-19 recession. Hence, understanding the effects and channels of mon-
etary policy at the ZLB remains an important question.

Shadow rate models are a common tool for analyzing the effects of un-
conventional monetary policy. The shadow rate is the counterfactual one-
period interest rate that would have obtained absent the ZLB (Black (1995)).
Shadow rate models combine a time series process for the stochastic discount
factor of financial market participants, the absence of arbitrage, and an effec-
tive lower bound on short-term interest rates. The path of the shadow rate
reflects market expectations of the length of time that short-term interest
rates would remain beneath its lower bound. These models have been used

to summarize the stance of monetary policy and to evaluate its real effects



(Wu and Xia (2016); Bauer and Rudebusch (2014)).

In this paper, we estimate different models using the discretization filter
(Farmer (2021)): with two and three latent factors, with “rational” survey
forecasts, and with “subjective” survey forecasts. Our set of models, while
not exhaustive, encompasses a broad range of specifications commonly used
in the shadow rate and affine term structure literature. We find that models
estimated with the discretization filter tend to be competitive in forecasting
forward rates relative to a yields-only model estimated with the extended
Kalman filter as in Wu and Xia (2016), and outperform it during and after
the COVID-19 recession. We also find that three factor models have supe-
rior ability to match the data (relative to two factor models) particularly
after 2007, although they (surprisingly) have lower likelihoods for the whole
sample. Given that our interest is understanding policy during the ZLB and
afterwards, we subsequently mainly focus on the policy implications of our
three-factor specifications.

Using our estimates, we re-evaluate a number of questions concerning
the effects of monetary policy on financial markets and the macroeconomy
during and after the Great Recession. First, we examine the model-implied
real-time beliefs about the duration of the zero lower bound across our mod-
els. The level of the shadow rate differs markedly across models. However,
all of our estimates qualitatively agree that markets persistently expected a
much shorter duration of the ZLB in the early stage of the Great Recession

than occurred ex-post. Our results suggest that the introduction of calendar-



based forward guidance in 2011 led to a small upward reassessment of ZLB
duration, although there is some upward drift in duration expectations prior
to the announcement. Models allowing for distorted forecasts imply market-
expected durations that are longer than forward guidance suggested, while
the other specifications usually align with the Fed’s Summary of Economics
Projections (SEP). These findings are consistent with prior work on the ex-
pected liftoff from the ZLB (Swanson and Williams (2014)) and suggest that
calendar-based forward guidance was at least somewhat effective at shaping
the beliefs (and behavior) of market participants.

Second, we examine the effect of monetary policy on the macroeconomy
using our shadow rate estimates. A large literature has used the Wu and Xia
(2016) estimates to replace the federal funds rate during the ZLB period. We
estimate an identical Factor-Augmented VAR (FAVAR) as in Wu and Xia,
replacing their shadow rate estimates with ours. We find similar impulse re-
sponses to monetary policy shocks during the Great Recession. However, we
also find some evidence of a structural break in either the effects of the lagged
policy rate on macroeconomic variables or lagged macroeconomic variables
on the policy rate for some specifications, contra Wu and Xia. We reject the
null of no structural break for nearly all but one model when we extend the
shadow rate estimation to 2023, even maintaining all the other aspects of the
underlying FAVAR. We also find a substantial differences when we extend
the macro dataset to just prior to the pandemic. Particularly, we find a 25

basis point decrease in the shadow rate decreases unemployment by about



0.03% at its peak, and the effects become insignificant in less than half a
year. These estimated magnitudes are much smaller than those found in the
existing literature (e.g. Wu and Xia (2016) and Corrado et al. (2021)). We
argue that the differences in estimated impulse responses are mainly driven
by differences in the macroeconomic sample, rather than the differences in
shadow rate estimates.

Finally, we explore less structural applications of the estimated models
for the assessment of policy. We use the estimated models to decompose
the yield curve into the expectations hypothesis (EH) component of yields
and term premia. We find that the first round of LSAPs largely affected
long-term yields by reducing term premia, a result that is consistent with
earlier findings (Gagnon et al. (2011)). The magnitude of the fall in term
premia differs across models, but it explains at least 80% of the decline in
yields. Finally, we study the predicted effects of LSAPs on available Treasury
supply and composition following D’Amico et al. (2012). We find effects of
LSAPs on long-term bond yields largely attributable to changes in duration
and changes in “local scarcity” of long-term Treasuries. Although numerical
details differ across models, they qualitatively agree that these two factors
explain most of the supply-induced change in risk premia around the first
two rounds of LSAPs.

Relative to existing work on shadow rates and the macroeconomy, we
innovate, and synthesize, along a number of dimensions. Methodologically,

we incorporate survey forecasts of average short-term interest rates into the



data used in estimation. Survey forecasts of interest rates are commonly
used to estimate affine term structure models to improve the precision of
estimates of the short-rate process (Kim and Orphanides (2012)), which in
turn materially impacts the properties of estimated term premia (Li et al.
(2017)). In the context of shadow rate models, having precise estimates of
the short rate process is especially important because the inferred dynamics
of shadow rates depend on the estimated degree of mean reversion in short
rates. Priebsch (2013, 2017) and Kim and Priebsch (2020) also incorporate
surveys into shadow rates estimation as rational expectations forecasts of
short rates. We go beyond this restriction by exploring an alternative model
of forecast formation following Piazzesi et al. (2015). They estimate a term
structure model which does not impose that survey forecasts are the same as
the forecast of the marginal bond trader. We extend their work to incorporate
the effective lower bound. We find in general that incorporating survey data
improves the ability of the model to forecast yields, with Piazzesi et al. (2015)
models having an advantage at the short end and rational survey forecasts
having superior performance for bonds maturing in a year or more. Relative
to the set of papers that incorporates “rational” forecasts (Priebsch (2013,
2017); Kim and Priebsch (2020)) we also explore the implications of short
rates and term premia estimated using these models. Since much of the
literature following Wu and Xia (2016) has focused on using their shadow
rate series in other applications, it is particularly important to understand

whether our assessment of monetary policy holds up to alternative data sets



and structural assumptions.

We obtain our shadow rate estimates using the discretization filter (Farmer
(2017, 2021)). Farmer (2017) applied the discretization filter to the estima-
tion of a three factor yields-only shadow rate model and compared his esti-
mated shadow rate series to Wu and Xia (2016). Relative to Farmer (2017),
we consider a larger range of models and data (both after the liftoff from the
ZLB and using forecasts) and explore the implications of our range of models
to quantify the impact of monetary policy at the zero lower bound during the
Great Recession and the COVID-19 period. Additionally, we extend the fil-
ter to incorporate missing data, in order to account for the different horizons
of forecasts available in different periods.

The most widely used estimate of the shadow rate for applied work,
Wu and Xia (2016), applies the extended Kalman filter (EKF). The EKF
uses local linearization of the observation equation to evaluate the likelihood
(Durbin and Koopman (2012).) Others (e.g. Bauer and Rudebusch (2016))
estimate parameters on pre-ZLB data alone. The discretization filter, by con-
trast, does not rely on linearization and its computational efficiency allows
for comparison of a wide selection of models. We find that shadow rates es-
timated using this method tend to have competitive forecasting performance
relative to those using the EKF, with mild costs of in-sample fit. Models
estimated using the discretization filter and including forecasts also perform
better during the COVID-19 recession and beyond.

Lastly, we examine whether the number of factors matters for our con-



clusions. Since at least Litterman (1991), the consensus has been that at
least three factors are necessary to capture the statistical properties of the
Treasury yield curve. Krippner (2015b) argues that two factor specifications
are more suited for monitoring and summarizing the stance of monetary pol-
icy at the effective lower bound. Two-factor estimates are often used as an
alternative benchmark in applied work (e.g., Carriero et al. (2021), Corrado
et al. (2021), De Rezende and Ristiniemi (2023), King (2019), Johannsen and
Mertens (2021), Nyholm (2021)). Finally, Krippner (2015b) advocates the
use of two-factor shadow rate specifications rather than the three factors com-
monly used in the affine and shadow rate literature. The focus in that paper
is mainly on monitoring and summarizing the stance of monetary policy. In
our estimates, two factor models surprisingly achieve a higher likelihood, but
three factor models outperform them in out-of-sample exercises and when
fitting the average forward rate curve from 2007 onward. Given their su-
perior performance in the main time period of interest, we focus mainly on
the implications of three-factor models. Importantly, many of the qualitative
and quantitative implications for policy are insensitive to the choice of the
number of factors used to estimate the models.

The paper proceeds as follows. The next section reviews the relevant
literature. Section 3 describes the shadow rate model, our information as-
sumptions, and the estimation. Section 4 discusses the estimation results and
the implied paths of the shadow rate; section 5 examines the macroeconomic

and policy applications of our estimates. We subsequently discuss results



over the COVID-19 associated recession and its aftermath, and sensitivity to

choice of yield curve estimates followed by the conclusion.

2 Literature Review

Our paper contributes to the growing literature on shadow interest rates in
arbitrage-free models, originated by Black (1995). The most closely related
papers are Wu and Xia (2016), Priebsch (2013, 2017), Kim and Priebsch
(2020), and Farmer (2017). We adopt the Wu and Xia (2016) approxima-
tion for short rates at the zero lower bound, and like them we investigate
the properties of estimated shadow rates in a FAVAR, but we find very dif-
ferent results on both the structural properties of these estimates and the
estimated impacts of shadow rate innovations on macroeconomic variables.
Farmer (2017) illustrated that the estimated parameters of a Wu and Xia
(2016)-style three-factor model differ when obtained using the discretization
filter. We extend the discretization filter to incorporate forecasts, estimate
a wider range of models, and explore their policy implications. We also ex-
amine the out-of-sample performance of the different shadow rate models.
Priebsch (2013, 2017) and Kim and Priebsch (2020) incorporate forecasts,
but mainly focus on the implications for the yield curve. They also assume
that forecasts are formed via rational expectations, an assumption that we
relax in this paper. Our results complement theirs by showing that includ-
ing forecasts can improve the out-of-sample forecasting performance of these

models in a pseudo-real-time environment. We also contribute to prior work
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by investigating the implications of our estimates for macroeconomic vari-
ables, as well as for the assessment of LSAPs (D’Amico et al. (2013)) and
structural VARs.

Our paper is related to two other papers that obtain shadow rate esti-
mates. Bauer and Rudebusch (2016) estimate a term structure model with
macroeconomic and (latent) financial factors using data from prior to the
ZLB period associated with the Great Recession. They then use simulations
over the ZLB period to find the modal forecast of the shadow rate and time
to liftoff. Their paper emphasizes the sensitivity of shadow rate level esti-
mates to model specifications, a theme we explore in other dimensions. Gust
et al. (2017) estimate a shadow rate in the context of a dynamic stochastic
general equilibrium model. We differ from these papers by jointly explaining
forecasts and forward rates, by generalizing the forecast formation process,
and using a fully nonlinear estimation method.

Several papers in the affine term structure literature have also incorpo-
rated forecasts into estimation — for example, Kim and Wright (2005), Wright
(2011), and Kim and Orphanides (2012). Piazzesi et al. (2015) show that risk
premia constructed using survey forecasts have different time series proper-
ties than those typically calculated from market data alone. We detail the
relationship of our paper to Piazzesi et al. (2015) in more detail in section
3. Relative to these papers, we jointly account for survey forecasts and the
ZLB in our framework.

A related literature connects forecast expectations to financial variables
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explicitly. Colacito et al. (2016) develop an equity pricing model that includes
variance and skewness of professional forecasts, which they treat as exoge-
nous. Barillas and Nimark (2018) and Struby (2018) estimate affine term
structure models with dispersed information and survey forecasts. These
papers do not incorporate the ZLB.

We contribute to a large literature attempting to measure the effects of
Federal Reserve policy at the zero lower bound, especially forward guidance
and LSAPs. Many of these papers, such as Krishnamurthy and Vissing-
Jorgensen (2011) and Nakamura and Steinsson (2018b) use event studies (in
part) to measure the impact of policy announcements.! Gagnon et al. (2011)
use an event study and a reduced-form model of the term premium to measure
the effects of LSAPs. Wright (2012) estimates a VAR, identifying monetary
policy shocks using heteroskedasticity, as well as an event study approach,
and finds that monetary stimulus at the ZLB has a short-lived effect on
longer-term Treasury yields and corporate yields. Hanson and Stein (2015)
find large effects of FOMC announcements over a sample that includes the
ZLB period. Bauer and Rudebusch (2014) estimate a suite of affine term
structure models at a daily frequency to distinguish between the effect on
term premia versus changes in the path of short rates (what they label the
forward guidance effect). Their interest is on characterizing how model and
parameter uncertainty affects the assessment of the two channels.

We differ from most of these papers by jointly estimating the dynamics

!Martin and Milas (2012) and Swanson (2018) survey this literature.

12



of forecasts and forward rates in a structural model. The advantage of our
approach is that it allows us to not just measure the raw effect of LSAPs, but
understand the changes in expectations of short rates and risk premia, assess
the perceived duration of the ZLB as it evolved over time, and examine the
robustness of our results to different structural assumptions. D’Amico and
King (2012) and Li and Wei (2013) examine the effects of changes in supply
from LSAPs on term premia estimated using affine term structure models.
We examine whether their interpretation of supply effects is robust to term
premia estimated using shadow rate models.

Lastly, we contribute to a literature examining whether unconventional
monetary policy stimulated real economic activity during the ZLB. Wu and
Xia (2016) estimate a FAVAR using their shadow rate as the policy rate dur-
ing the ZLB period associated with the Great Recession; they find monetary
policy was effective at lowering the unemployment rate during this period.
Corrado et al. (2021) find a similar result using the Wu and Xia (2016) and
Krippner (2015b) shadow rate estimates in the context of a Markov-switching
FAVAR. We revisit these results using our suite of estimates based on alter-

native model specifications.
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3 The shadow rate model and discretization

filter

This section contains the details of the shadow rate model and estimation
procedure. First, we outline the shadow rate model, following Wu and Xia
(2016). Following that, we explain the alternative information assumptions
we use to map the forecast data into the shadow rate model. Finally, we

discuss estimation.

3.1 The Wu-Xia Shadow Rate Model

Following Wu and Xia (2016), the nominal short rate 7, is given by

re = max(r, ;) (1)

The shadow rate s; is affine in the state vector X;:

5 = 0p + 01Xy (2)

The stochastic discount factor M;; is exponentially affine, and is related

to the prices of risk A\; and innovations to the state ;. :

1
In M1 =myy = —1¢ — §>\;)\t - )\fg€t+1 (3)

The prices of risk are themselves a linear function of the state:
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>\t — )\o + >\1Xt (4>

Using the superscript Q to indicate the risk-neutral probability measure,

the law of motion for fundamental factors under the risk neutral measure is

X = p@ 4+ p0X, + 2y e, ~EN(0, D) (5)
Under the physical measure, the law of motion is:

Xipr =p+pXi+ X1 €01 ~ N(0,1) (6)

The change of measure is related to the prices of risk (the A\ terms) and

the sizes of risks that bond traders face () in the following way:

M= MQ =X (7)

p—p?=3\ (8)

Finally, we denote the forward rate from ¢t + ntot+n+1 as

font1t =M+ DYni1t — NYny (9)

where y,,; is the log yield on a zero coupon bond bond that pays a dollar

at time t + n. Given this setup,
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where

9(z) = 28(2) + ¢(2) (11)

®(-) and ¢(-) are a standard normal CDF and PDF, respectively (see
Wu and Xia (2016) for details). a, and b, are nonlinear expressions of the
prices of risk and parameters governing the state, and are defined explicitly

in Appendix A.

3.2 Incorporating forecast survey data

We deviate from Wu and Xia (2016) and other earlier shadow rate esti-
mates by incorporating forecasts data in the estimation. We utilize the Blue
Chip Financial Forecasts survey, which is a monthly publication that collects
macroeconomic and financial forecasts of market participants’ beliefs over
subsequent quarters.? We use the average forecasts of the 3-month constant-
maturity Treasury bill yield to construct paths of average expected short-
term rates over different horizons. We identify forecasts with the average
short rate implied by the physical measure over the relevant horizon. Us-
ing analogous steps in the derivation of forward rates under the risk-neutral

measure, one can show that expected short rates under the physical measure

2In Appendix B we show that the average forecast from the survey is consistent with
short-term yields.
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are

(12)

where

i(ﬂ)j] u (13)
bg = 61(p)" (14)

(oF vart_z(sl )55 (p)7] 8 (15)

Because the Blue Chip survey asks questions about quarterly averages,
the horizon over which respondents are actually forecasting varies depend-
ing on the survey month. We account for this by extracting the purely
forward-looking component from current-quarter forecasts (see Appendix C).
Forecasts at horizons beyond the current quarter are raw average forecasts
provided by the survey. Depending on the survey month, the horizon over
which the survey reflects a forecast is changing, which we adjust for in our
estimation method as detailed in section 3.3.3.

The addition of surveys to the data set requires making an assumption
about their data generating process. In an affine context, Kim and Or-

phanides (2012) treat average forecasts as generated under the physical mea-
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sure and full information rational expectations (FIRE), and observed with
1.1.d. measurement error. We refer to estimates made using these assumptions
as “KO” estimates for brevity.

A large literature has documented that there are aspects of forecast sur-
veys that are inconsistent with FIRE. In Appendix B, we show that forecast
errors are predictable in economically and statistically significant ways. Be-
cause we are interested in whether our results are sensitive to the choice of
how to add forecasts into the model, we also estimate models using a differ-
ent strategy following Piazzesi et al. (2015). They use short rate forecasts
to construct “subjective” interest rate expectations and risk premia using
quarterly data. They estimate a statistical model of yields and expected
inflation, and then estimate parameters governing the risk-neutral measure
and a subjective “distorted” measure in a second step by minimizing mean
square error between the model-implied yields and forecasts. We modify
their approach along several dimensions. In addition to estimating a model
with the ZLB, we focus on forecasts of three-month Treasuries at horizons of
1-18 months ahead. We also estimate the dynamics of the physical, risk neu-
tral, and distorted measure jointly in a single (quasi-) maximum likelihood
step. Like Piazzesi et al. (2015), we assume that forecasts are formed under

a “distorted” physical measure as in equation (12), but with p replaced by

p— Xk
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where k is a conformable matrix of parameters that govern the degree
of distortion. We refer to this set of estimates as the “PSS” model. In
both the KO and PSS cases, we assume the 7.7.d. measurement error has a
constant variance across forecast horizons. Finally, we also estimate models
without including forecasts, which we refer to as yields-only models (“YO”).
The three-factor YO model (YO3) is most analogous to Wu and Xia (2016)’s
estimates, with the main difference being the underlying yields data and
the use of the discretization filter rather than the EKF. In some figures, we

compare results based on our estimates to those of Wu and Xia (2016). We
label their results as “WX.”

3.3 Estimation details

This section contains details about the factor structure, mapping of the model

into a state-space representation, and the estimation details.
3.3.1 Factor normalization and structure

We estimate the parameters governing the physical dynamics of our latent
risk factors (equations (5) and (6)) and the prices of risk parameters A\g and
A1. For three-factor models, we impose a similar normalization to Joslin et al.

(2011) and Wu and Xia (2016) for the risk neutral factors:
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,u@ -0 (17)

We also assume p? is in real Jordan form with eigenvalues in descending
order and ¥ is lower triangular. Joslin et al. (2011) show that this is the
maximally flexible specification for latent dynamics that is econometrically
identified. Unlike Wu and Xia (2016), we do not impose a repeated eigen-
value in estimation. We also estimate two-factor versions of each model with

analogous restrictions following Krippner (2015b).
3.3.2 The nonlinear state-space representation

Throughout, we assume that the state equation is a VAR(1). The physical
dynamics of the fundamental states are as in equation (6). The observed
forward rate is the same as in equation (10) augmented with measurement

error:

an, +0,X; —1
fantrs =1+ 039 (*) + wen (18)
On

where w is a measurement error parameter common across horizons and
ent ~ N(0,1). We allow this measurement error to have a different variance
than the measurement error of forecasts. Generically, we collect observables

by stacking them in an observation equation Gy(X}).
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3.3.3 Details of the estimation procedure

The data runs from 1987-2019 at a monthly frequency. Forward rates are
constructed using the Liu and Wu (2021) yield curve estimates and averaged
over the month (to align the data with the Blue Chip question wording).

We estimate the nonlinear state space model using the discretization fil-
ter proposed by Farmer (2021). Farmer’s discretization filter approximates
the state distribution on a discrete grid. We use the method outlined in
Gospodinov and Lkhagvasuren (2014) to approximate the state distribution,
choosing grid points to approximate the first two moments of the underlying
Gaussian VAR. We then use G;(X}) to calculate predicted values of the ob-
servable forward rates and forecasts at each point on the grid. Treating each
point as a regime for the data, the likelihood is estimated in a method similar
to the Hamilton (1989) filter. Standard errors on parameter estimates are
QMLE standard errors as in Hamilton (1989). We estimate smoothed states
via an appropriately modified version of Kim’s smoother (Kim (1994)).

We adjust the Farmer (2021) procedure slightly to account for the fact
that we do not observe each forecast horizon every month. Our treatment of
missing values is analogous to the treatment of missing data in other state
space models (e.g. Durbin and Koopman (2012)). G(X;) has a time-varying
dimension to capture the fact that forecasts of particular horizons are peri-
odically unobservable. Because which forecasts are missing is a deterministic

function of time and unrelated to the (hypothetical) values of those fore-
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casts, the missing observations are “ignorable” in the sense of Rubin (1976).
Hence, they do not affect inference of the parameters governing the hidden
Markov model (see Speekenbrink and Visser (2021)). The process for which
observations are missing can be factored out of the likelihood function, the re-
sulting likelihood is proportional to the likelihood function without missing
data, and the convergence proofs in Douc et al. (2004), Douc et al. (2011)
and Farmer (2021) are unaffected.

We adopt the discretization filter, rather than using the extended Kalman
filter (EKF) as in Wu and Xia (2016). Both involve approximation: the
discretization filter approximates the state space on a grid, while the EKF
linearizes the observation and state equations locally. Farmer (2021) shows
in the context of a different model that the discretization filter can achieve
lower root mean square error and bias than the EKF. We present results from
estimating a three-factor, yields-only version of the model with the EKF in
Appendix G. For that model, the within-sample fits for both the EKF and
the discretization filter are similar. Out of sample, the EKF tends to do
similarly or slightly worse at short horizons and better at ten year horizons.
Its performance during the COVID-19 pandemic and afterwards, however,
is much worse at short horizons, particularly compared to the models that
incorporate forecasts. In practice, we also found that the EKF was much

more computationally expensive in models that incorporate forecasts.?

3The EKF is much quicker than the discretization filter for yields-only models. How-
ever, at each time ¢, the EKF requires linearization of the observation equation G; to
evaluate the likelihood, which adds a considerable computational burden when the dimen-
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4 Estimation results

In this section we discuss parameter estimates and model fit, and present the

estimated shadow rates and implied ZLB duration.

4.1 Parameter estimates and model fit

We report parameter estimates for all models in Appendix D. In the estima-
tion, we constrain the lower bound parameter to fall below 25 basis points,
which is the value assumed by Wu and Xia (2016). For the 3-factor yields
only model, that constraint binds, but the remaining models fall between 12
and 21 basis points, slightly above that used in Federal Reserve Board staff
estimates in 2012 (around 10 basis points).

Model-implied shadow rate expectations depend on the set of parameters
governing the physical dynamics. The inference about the values of these
parameters differs across the models, in general. This is mainly driven by
differences by factors after the first. Comparing the three-factor models,
the largest eigenvalue for each system is both highly persistent and roughly
similar across the models (although slightly larger for the models using fore-
cast data). The remaining eigenvalues for the KO model are complex (with
modulus of about .92) while the YO and PSS models have three distinct
eigenvalues. The difference is both what information is used to inform the
estimates (e.g., forecasts are an additional set of observations that depend on

the parameters governing risk-neutral dynamics) and identifying assumptions

sion of G; varies over time, as in the KO and PSS models.

23



(e.g., whether we restrict the forecasts to be governed by exactly the same
persistence parameters as the yields). One implication of these differences
is that the predicted long-run short rate differs substantially across models;
just under 2.0% for the three-factor KO model, 3.4% for the PSS model and
4.2% for the YO model. In other words, the models disagree about the “long
run” nominal short-run interest rate.

The PSS models also allow for differences in the physical dynamics and
the time-series process perceived by forecasters. Interestingly, the PSS two-
and three-factor models disagree on the characteristics of that distortion. For
the two-factor model, the eigenvalues for the distorted state-space process
are smaller than for the physical process. This result would imply that
forecasters thought short rates were less persistent than they actually are.
For the three-factor model, the differences are somewhat more subtle. The
two largest eigenvalues under the distorted measure are larger but the third
is smaller. Impulse responses to s; under each measure (shown in figure 1)
are qualitatively different for the first and third factors as a result. Shocks to
the third factor are forecast to have larger effects at medium-to-long horizons
under the physical measure than the distorted measure, while shocks to the
first factor result in expected shadow rates that are higher at long horizons
in the distorted measure. The differences in the perceived evolution of short
rates will also imply differences in perceived duration of the ZLB across the

two measures, as we will see below.
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In- and out-of-sample fit Having estimated the complete suite of models,
we now investigate how well they can explain the data.

In terms of comparisons across models, different criteria point to differ-
ent models as providing the best fit. For instance, the two factor models
(surprisingly) achieve higher values for the log-likelihood over the complete
sample than the analogous three factor models; the two-factor KO model has
the highest likelihood of models that use forecasts, but the PSS three-factor
model outperforms the KO three-factor model.

Arguably, we should focus on the ability of the model to capture the data
in the post-2007 period — i.e., how well do shadow rate models capture the
data at the zero lower bound and in the post-ZLB regime? Appendix figure
D.1 shows the average yield curve predicted during the ZLB period versus
the data. Each model appears to capture the shifts and changes in the shape
of the yield curve during the ZLB period and the nonlinearity at the short
end. Panel A of table 1 summarizes in-sample fit (mean absolute error and
root mean square error), on average, for each model. The three-factor YO
model appears to have the best performance (although it does not have to
simultaneously explain forecasts and yields). The fit of the three-factor YO
model is also similar to the average fit for the analogous model estimated
with the EKF (see appendix table G.1) .

We also examine out-of-sample fit in a pseudo-real-time forecasting exer-
cise for the ZLB period. Starting in 2007, we estimate the model parameters

using only the data available as of December of that year. We then forecast
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forward rates at monthly horizons 1- to 12-months ahead, and we re-estimate
adding the subsequent 12 months of data. Although our main sample ends in
2019, we conduct the pseudo-forecasting exercise all the way through the end
of 2023. Hence, for forward rates of each maturity, we have 216 (18 estimates
of 12 horizons) sets of forecasts.* Panel B of Table 1 displays the RMSE and
MAE from this exercise, and panels C and D break the out-of-sample fore-
casting results between the pre-COVID (2007-2019) and post-COVID period
(2020-2023). Barring one set of forecasts, three factor models have lower
error than their two factor counterparts.® Taken together, these results seem
to point towards the superiority of three factor models for actually captur-
ing the phenomena of interest, relative to their two-factor counterparts. In
our subsequent discussion, we focus mainly on the implications of the three-
factor models. The results are less defininitve on which specification — YO,
KO, or PSS — is most useful for applied work. The PSS models appear to
do somewhat better at forecasting at shorter horizons and in-sample than
the KO models, while the KO models do better at the medium and longer
end. The YO model has the best overall fit of the actual yields data during
the period of interest. Hence, we generally focus on areas of consensus and

disagreement across the three specifications.

4Because of the computational burden of estimating the model, re-estimating for each
additional month of data is infeasible.

SParticularly, the two-factor PSS model has the lowest error for ten year forecasts
during the 2020-23 period. However, the MAE is only one basis point lower than the
three-factor KO model.
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4.2 Shadow rate estimates and the forecasted length
of the ZLB period

Figure 2 shows our shadow rate estimates alongside the Wu and Xia (2016)
estimates during the ZLB period for the three-factor models. We also indi-
cate a selection of policy event dates during this period. The level of our
estimates is generally lower than that estimated by Wu and Xia (2016), at
least through the taper announcement. Our estimated rates are somewhat
smoother than the EKF estimates, and tighten more quickly following the
taper announcement.%

The level of the shadow rate reflects the speed with which short-term
interest rates are projected to revert to their mean. Arguably, when short-
term interest rates rise above their lower bound is more informative. We
translate the level of the shadow rate to the implied belief about how long
short rates will remain at the ZLB. This duration is shown in Figure 3. All
of our models suggest that market participants initially under-predicted the
(ex-post) duration of the zero lower bound.

In August 2011, the Federal Open Market Committee (FOMC) intro-
duced specific calendar-based forward guidance in their Summary of Eco-
nomic Projections (SEP). In Figure 3, the black dashed lines indicate the
range of dates for target rate liftoff implied by the SEP. These dates are shown

as a range because they are only reported using end-of-quarter or end-of-year

STwo factor estimates generally seem to have a lower level than the three factor esti-
mates, as shown in appendix figure F.1.
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estimates for the federal funds rate. The introduction of calendar-based for-
ward guidance corresponded with an upward reassessment of the expected
ZLB duration. We display this effect in Figure 4, which focuses on the period
surrounding the introduction of the guidance. The point estimates suggest
that calendar-based forward guidance extended the market’s estimate of the
ZLB duration by between 2 and 4 months. There is also some upward drift
in the months prior to the announcement, although that could simply be
markets reacting to the same information that contributed to the FOMC’s
new policy.

The models do not agree on the precise month of liftoff even after the in-
troduction of calendar-based forward guidance. All of the models agree that
liftoff would occur sometime after mid-2013. The yields only model suggests
market participants’ beliefs were consistent with the SEP’s guidance of “ex-
ceptionally low levels for the federal funds rate at least through mid-2013.”
The KO model suggests the central tendency of beliefs was consistent with
the SEP up through 2014, when the median path diverges (albeit with very
wide confidence bands that include the SEP’s corridor). The beliefs implied
by the physical and distorted dynamics diverge, with the physical dynamics
implying a longer duration of the ZLB throughout (and much longer than the
SEP’s guidance). The distorted dynamics, by contrast, imply beliefs that are
more-or-less consistent with the SEP’s forward guidance. The KO and PSS
results are informative about each other. The PSS model essentially relaxes

a requirement imposed by the KO model that the market forecast and the
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Blue Chip forecast must have the same data generating process. The results
imply that Blue Chip forecasters’ beliefs were essentially consistent with the
forward guidance provided by the FOMC. By contrast, the “market” forecast
(implied by the physical measure) implied more persistence in the underly-
ing factors that drive short rates in order to match the actual behavior of
forward rates. In other words, the estimated physical dynamics implied that
once rates were low, they implied they would stay low for longer. The KO
model, in attempting to reconcile a possible change in the beliefs of partic-
ipants with what it sees in yields, appears to split the difference relative to
the PSS measures.” The results in table 1 imply that the three-factor KO
and PSS models have similar ability to forecast forward rates which makes
their starkly different predictions about the implied duration of the ZLB all
the more surprising. However, the ability to flexibly reconcile the divergence
between physical and subjective beliefs is probably why the PSS model ap-
pears to have superior fit in-sample and forecasting over short horizons in
particular.

In short, our results confirm that markets initially under-estimated how
long interest rates would remain at their lower bound in 2008 and 2009.
There is evidence that calendar-based forward guidance shifted the market’s
perceived duration of the ZLB in the desired direction, although the exact

degree to which that occurred differs across models, as does whether the

"Interestingly, relatively more persistence in physical than subjective short rates is the
opposite of the estimated result in Piazzesi et al. (2015).
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models imply beliefs consistent with the SEP’s calendar.

5 The effects of monetary policy during and

after the Great Recession

In the previous section, we showed how beliefs about the effective liftoff of
monetary policy evolved over the course of the ZLB period. In some ways, the
features of these beliefs reflect very different beliefs about monetary policy.
In this section, we explore how novel monetary policy tools affected asset
prices and the macroeconomy during this period, viewed through the lens of
our estimates.

We conduct three exercises. First, we estimate a structural FAVAR as in
Bernanke et al. (2005); Wu and Xia (2016). We test whether there was a
structural break during this period; we find mixed evidence for a break. This
cautions against using the level of the shadow rate as a measure of the mone-
tary policy stance during the ZLB period without accounting for structural or
regime changes. Using an updated macroeconomic sample from 1987-2019,
we find shocks to policy rates that are less persistent and have much smaller
effects than reported Wu and Xia (2016). But, we also show that differences
in estimated impulse responses to a shock to the shadow rate are driven
mainly by differences in the underlying macroeconomic dataset rather than
differences in the covariance between shadow rates and other macroeconomic

indicators. Second, we examine the effects of policy announcements on term
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premia. All of our models suggest there were substantial reductions in yields
and term premia around the first two rounds of LSAPs and the introduction
of calendar-based forward guidance, but not for the third round of LSAPs.
Third, we relate our term premia estimates to measures of Treasury supply
and duration in the pre-ZLB period and decompose the first round of LSAPs
into different supply channels. Consistent with prior studies, we find that
term premia fell as aggregate duration was removed from the market and

that there is evidence of “local scarcity” effects on term premia.

5.1 Estimation of FAVAR and the effects of monetary
policy shocks

Following Wu and Xia (2016), we estimate a Factor-Augmented Vector Au-
toregression (FAVAR) as in Bernanke et al. (2005), where we substitute the
shadow rate for the effective federal funds rate when policy rates are con-
strained. To isolate the difference driven by shadow rate estimates alone, we
initially se the same data specification and code as Wu and Xia (2016) to

estimate the FAVAR. The unrestricted model is:
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By construction the macroeconomic factors (F;) have been purged of ef-
fects from the policy /shadow rate, and the variance-covariance matrix of the
structural shocks v, is lower triangular.

The null hypothesis of the structural break test is that B; (L) and B3 (L)
are equal. Like in Wu and Xia (2016), we examine whether this is the case
using a likelihood ratio test adjusting for small-sample bias (Sims (1980)).
The first column of table 2, panel (a) reports the p-value for the coefficients
of lagged shadow rates vis-a-vis the macroeconomic factors. Focusing on the
three-factor specifications, we fail to reject the null for the YO and PSS mod-
els, but do reject it for the KO model at the 95% level. The second column
reports the p-value for the coefficients of lagged macroeconomic factors on

shadow rates. We do not reject the null for any of the three-factor models in
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this case.?

Because our shadow rate estimates are based on smoothed factors, they
cover the full sample of yields. Since the contribution of Wu and Xia (2016),
we have an additional ZLB period that may be informative about the param-
eters governing the shadow rate. As an experiment, we substitute shadow
rates based on our yield and parameter estimates from 1987-2019 to those
using data from 1987-2023 (e.g., the COVID-19 pandemic period and its
aftermath; we discuss these estimates more in section 6). We similarly es-
timate the FAVAR using the same data and specification as Wu and Xia,
covering the period 1960-2013, so any differences are driven completely by
new information about the shadow rate alone and subsequent macroeco-
nomic developments. The results are shown in panel (b) of table 2. We
reject the null of no structural break for all of our models except the YO
three-factor model. As we discuss later, this model breaks down during the
COVID period. While not definitive, these result cautions against assuming

continuity in macro-monetary policy relationships before and after the Great

8While we focus mainly on the three-factor specifications, we note that we do reject
the null for the two-factor specifications. As mentioned in the introduction, a number of
authors continue to use shadow rates estimated with two factors in applied work, at least
as a robustness check; our results suggest they should be very cautions about the presence
of a structural break.
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Recession.”

Is it the shadow rate or the macroeconomic data? Up to this point,
we have focused on whether swapping our shadow rate estimates in for the
Wu and Xia (2016) estimate materially impacts the FAVAR structural break
test. One way of seeing if the substantive conclusions differ across our rates is
to focus on the “post-crisis” period. Figure 5 compares the impulse response
for the unemployment rate to 25 basis point decreases in the policy rate for
an estimated FAVAR(1) using the same macroeconomic data as Wu and Xia,
but swapping our shadow rate estimates. From the figure, we see that the
median impulse responses across models are relatively similar; the impulse
responses using our shadow rate estimates appear to have shorter half-lives
than the Wu and Xia estimate, but the peak effects are similar. One might
conclude that monetary policy has slightly less long-lived real effects than
previous expected.

Subsequently, we estimate the FAVAR on a different macroeconomic
dataset, the “FRED-MD” dataset from McCracken and Ng (2015), from
1987 to 2019.1% Other than changing the dataset, we maintain the same

FAVAR(13) specification for the complete sample and FAVAR(1) for the

9This result is in contrast to Wu and Xia (2016)’s suggestion that “the continuity of
our shadow rate allows researchers to update their favorite VAR during and post the ZLB
period.” While it is true that models estimated with their shadow rate to not appear to
have a structural break at the Great Recession, this is not necessarily true of any given
shadow rate estimate. We note that estimating using the Liu and Wu (2021) yields and
our extended sample, but using the EKF as in Wu and Xia (2016), we do not reject the
null of no structural break before and after the Great Recession.

0Particularly, we use the vintage as of November 2024. We drop data series with missing
values and use McCracken and Ng’s suggestions for stationarizing the underlying series.
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“post-crisis” (July 2009-onward) sample as Wu and Xia (2016). The result-
ing impulse responses are shown in figures 6 and 7, respectively. The first
column of each figure, labeled WX (2016), replicates the existing estimates
from Wu and Xia. The second uses the most recent (as of December 2024)
vintage of Wu and Xia shadow rate estimates from the Federal Reserve Bank
of Atlanta, combined with the FRED-MD data. Subsequent columns re-
port impulse responses using our shadow rate estimates and the FRED-MD
dataset. We find that impulse responses with the FRED-MD dataset and our
more limited time frame mean revert much more quickly and do not differ
substantially across estimation method; the peak decrease in unemployment
is less than two-third as large as in Wu and Xia, and the effects become
insignificant within six months. For the post-crisis sample (incorporating an
additional six years of data), the effects of monetary shocks are minuscule.
One some level, this is unsurprising; Ramey (2016) points out that the ef-
fects of monetary policy shocks have been more difficult to identify since the
1980s because monetary policy is more systematic. On the other hand, it
is somewhat surprising that even the extraordinary policy during the Great
Recession was not particularly informative about the effects of monetary
shocks, or that those policies did not have sizable real effects.

It is worth emphasizing that the presence of a structural break, and the
differences in impulse responses, do not necessarily imply the shadow rates
are not a useful replacement for the federal funds rate in monetary VARs.

Our argument is that care is needed; the choice of sample appears to be more
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material than the method of estimating the shadow rate in this particular

application.

5.2 Decomposition of yields around policy events

Changes to the stance of monetary policy can simultaneously affect both
expected future short-term rates and expected future risk premia.'’ We use
our estimates of shadow rate paths to decompose changes in the monthly 10-
year Treasury yield following select Federal Reserve unconventional policy
event dates during the ZLB period. Term premia are calculated by using
the estimated parameters to calculate the expected path of nominal actual
short rates out to ten years — that is, the expectations hypothesis component
reflects the effective lower bound on interest rates.

The effect of unconventional policy on term premia is debated in the
literature. For example, Gagnon et al. (2011) argue that early asset pur-
chases were consistent with a portfolio rebalancing channel through which
the reduction in supply of long-duration assets reduced term premia and
hence long-term yields.'? Swanson (2018) finds that LSAPs affected long
term yields, while forward guidance affected short-term yields. But Krish-

namurthy and Vissing-Jorgensen (2011) attribute some change in yields to

"Hanson and Stein (2015) find significant effects of changes in the two-year U.S. Trea-
sury yield on long-term real rates in a two-day window of FOMC announcements. In con-
trast, Nakamura and Steinsson (2018a) provide high-frequency evidence that term premia
are virtually unaffected by monetary policy shocks. Kuttner (2018) surveys the evidence
on the effectiveness of unconventional policy.

12The June 2020 assessment of the Fed’s monetary-policy framework (Caldara et al.
(2020)) cites effects on the term premium from LSAP1 event dates of Gagnon et al.
(2011).
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changes in the expectations hypothesis effects and Bauer and Rudebusch
(2014) attribute roughly 40-50% of the reduction in 10-year yields around
LSAP events to changes in policy rate expectations.

Using our collection of models, we decompose rates on 10-year Treasuries
into their expectations hypothesis and term premium components, in order
to understand whether our results suggest these events primarily operated
through term premia or not.'® Figure 8 displays the 10-year U.S. Treasury
yield in black along with the EH component of yields calculated from each
model. The decomposition shows that the 10-year yield experienced steep
declines in the months of major early Federal Reserve policy announcements.
For example, between November and December 2008 (LSAP1), the 10-year
yield fell by about 112 basis points.

All of our models attribute little of this decline to the EH component of
yields (ranging from 2 basis points for the 3-factor KO model model to 18
basis points for the 3 factor YO model). This implies the share of the yield
decrease from the LSAP announcement attributable to changes in the EH
component is between 1.7% and 16.5%. Narrowing in on three major event
dates, Figure 9 plots the cumulative change in the 10-year yield (black line)
and EH components across models from the month before LSAPs 1 and 2
and the introduction of calendar-based forward guidance (FG). The bulk of

the change in the 10-year yield following LSAP1 and the forward guidance

13The decomposition of the yields across maturities for the entire sample is available
upon request.
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announcement were due to changes in term premia. In contrast, changes in
the EH component were relatively more important following LSAP2.

In summary, the interpretation of how major policy announcements af-
fected yields appears to be sensitive to a number of features of the under-
lying estimates of risk premia. Given this sensitivity, it is unsurprising that
previous efforts have found mixed evidence on the precise effects of policy
announcements. However, the results here imply that the range of disagree-
ment appears to be about whether term premia explain the entire cumulative

change in yields versus about four-fifths.!4

5.3 Supply effects and term premia

Previous studies have found that the composition of medium- to long-term
Treasury securities in the Fed’s portfolio can have sizable effects on yields.'
To the extent that LSAPs change that composition, the effects could operate
either through changes in the EH component of yields or through the term
premium. The former channel would suggest that LSAPs signal changes
in expectations of the path of future short-term rates (Krishnamurthy and
Vissing-Jorgensen (2011)). Alternatively, the Fed’s purchases could coincide
with lower interest-rate risk through the removal of aggregate duration of
Treasury securities (Gagnon et al. (2011)) or changes in the scarcity of assets

with similar maturities (D’Amico et al. (2012)). The results in the previ-

14This particular result is quantitatively sensitive to the choice of underlying yield curve
data, a point we discuss more in section 7.

15D’ Amico et al. (2012) and Huther et al. (2017) provide thorough historical descriptions
of the Fed’s balance sheet policies.
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ous section suggest that the majority of the change in yields during the first
round of LSAPs was due to changes in term premia. Hence, in this section,
we examine the channels for those changes in term premia and whether con-
clusions about those channels differs based on the method of estimating term
premia.

To construct measures of Treasury supply, we first merge the CUSIP iden-
tifiers of all outstanding U.S. Treasury securities from the Center for Research
in Securities Prices with the Fed’s weekly System Open Market Account
(SOMA) holdings and Treasury buyback operations. Following D’Amico
et al. (2012), we proxy for local scarcity using privately held nominal Trea-
suries (PHNT), the share of Treasury securities held by the private sector -
outside the Federal Reserve and U.S. government. We focus on the holdings
of securities with maturities ranging from 2 to 10 years as a share of total
Treasury debt outstanding, due to the Fed’s concentration in purchases of
these assets in 2008. To proxy for duration risk, we calculate the duration
gap (DG), the difference between aggregate duration risk in the 2-10 year
maturity bucket and the duration of the on-the-run 10-year Treasury bond.
Aggregate duration risk is the sum of modified duration weighted by PHNT
for each CUSIP. In addition, we control for the slope of the term structure,

proxied by the difference between the 10-year and 2-year nominal Treasury
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yields. The regression equation is:

TP(10yr), = fo + S1PHNT (m : 2 — 10); + B2 DG, + (3Slope(10-2yr), |, + &
(19)

Table 3 displays results from these regressions. In the first column, we
regress 10-year U.S. Treasury yields (rather than term premia) against our
local scarcity, duration, and slope proxies. The adjusted R? for this regres-
sion is about 56%. We then use the model-implied monthly 10-year term
premium as the dependent variable in regression (19) to examine whether
the impacts of policy differ across models. We find robust evidence that
local scarcity and the duration gap both significantly explain term premia;
the slope is also generally significant. D’Amico et al. (2012), using weekly
data over the same sample period and a term premium estimated using an
affine term structure model, found point estimates of 4.34 and 123.47 for
local scarcity and duration, respectively. In both cases, these variables were
robustly significant in explaining 10-year term premia. Our estimated point
elasticities on local scarcity are about 30% smaller (except in the PSS 3 fac-
tor case), while the elasticity of term premia with respect to the duration
gap ranges from about 35% smaller (PSS3) to nearly 40% larger (YO2). As
emphasized by Wu and Xia (2016) and Bauer and Rudebusch (2016), the
behavior of short-term rates (and hence expected rates and term premia)
is quite different for affine versus nonlinear models which likely affects the

results. But our suite of models suggests that the local scarcity channel’s
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statistical and economic significance is not sensitive to the term structure
model used to estimate term premia.'®

We use the estimated point elasticities from the pre-2008 sample to pre-
dict the effects of changes in supply on yields and term premia. D’Amico
et al. (2013) document that the first (second) round of LSAPs decreased
privately held nominal treasuries by about 4.69% (6.98%) and decreased the
average duration gap by about 0.12 (0.10) years. Their estimates imply that
the first LSAP program decreased term premia by about 42 basis points
overall. Using our estimated results from Table 3, we calculate the predicted
change in 10-year Treasury yields and term premia, with results reported in
Table 4. Based on these estimates, we would have predicted yields to de-
crease by about 39.6 basis points overall as a result of LSAP1 and 43.7 basis
points as a result of LSAP2. We interpret these numbers as the predicted
change in yields attributable to the supply factors in the reduced-form model.
Term premia are predicted to fall between 28 and 35 basis points for LSAP1
and 34 to 44 basis points for LSAP2, depending on the model. Given that
the (predicted) change in yields must be attributed to either term premia or
expectations, we interpret the residual as the variation in short-rate expecta-
tions induced by the supply changes from the LSAP programs. These effects
are only marginally significant for the 3-factor YO model for LSAP 1.

We are cautious to not draw a causal interpretation from these regres-

6However, it may be sensitive to the underlying data used to estimate the term premia
as we note in section 6.
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sions. Moreover, these results in isolation do not imply that there were no
signaling effects of the LSAP programs, since they are isolated to the effects
predicted by duration and local scarcity effects. The robust finding across
our specifications is that the change in duration and local scarcity associated
with economically and statistically significant changes in term premia for 10-
year Treasuries. However, the precise magnitudes and relative importance of
each channel varies across the specifications used to estimated term premia.
Moreover, our estimated term premium changes are about 15-30% smaller
than the elasticities reported in D’Amico et al. (2012), and we generally esti-
mate relatively smaller contributions from scarcity and larger from duration

relative to that paper.

6 What do we learn from the COVID-19 re-

cession?

Our focus in this paper has been on the ZLB period following the 2008
financial crisis and the effects of monetary policy at that time. Accordingly,
we ended our main sample in 2019, in order to avoid influencing our estimates
with the dramatic, but short-lived, recession associated with the COVID-19
pandemic. But, of course, the Federal Reserve lowered rates to their lower
bound during 2020 and kept them there for two years, so it is worth examining
how our models handle this period. We plot the yields from this period in

figure 11. The decline in yields was quite sharp at the beginning of both
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crises, but the length of time at the lower bound was notably shorter for the
pandemic recession, and the increase in rates at the short end of the yield
curve was much more rapid once the Federal Reserve began tightening.

We have already noted in section 5 that yields data from this period
inform the estimates of shadow rates for earlier periods. This affects con-
clusions about applications back to the Great Recession period. We report
parameter estimates for the extended sample in online appendix H, as well
as a measure of average fit. It is clear from the measures of fit that some
specifications of the model struggle to fit the yield curve with the additional
observations from 2020-2023. In particular, the three-factor YO model dis-
plays bizarre average predictions.!” The three-factor KO and PSS models,
however, have good fit, capturing the inverted average yield curve from 2022
and 2023.

We also examine the implied durations of the ZLB during this period,
compared to the guidance from the Fed’s SEP. The median forecast for the
short rate at the start of the pandemic was zero for the entire forecast hori-
zon, before narrowing in late 2021. The three-factor models with forecast
information seem to be broadly consistent with these paths, although we
once again see that there is a disconnect between the estimated physical and
distorted paths of short rates — in particular, the median Blue Chip forecast

appears to imply tightening would occur earlier than the SEP indicated.

1"The two-factor models also suffer a degradation of performance, further affirming our
focus on three factor models for our policy applications.
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Taking these results alongside those from section 5, it seems that three-
factor shadow rate models that incorporate forecast information are capable
of bridging both recent ZLB episodes. We are less sanguine about yields-
only models (and models with fewer factors). Concretely, it appears that
markets and forecasters broadly understood the path of policy, especially as

the Federal Reserve approached normalization.

7 Sensitivity to yield curve data

In an earlier working paper version of this paper, we used the Giirkaynak
et al. (2007) (GSW) zero-coupon yield curve estimates, following the choice
made by Wu and Xia (2016). Subsequent to our first completed draft, Liu
and Wu (2021) (LW) published new estimates of the zero-coupon yield curve,
which we have used in this iteration.'® The Liu and Wu (2021) yield curve es-
timation methodology differs from Giirkaynak et al. (2007) in two important
respects: Liu and Wu’s estimates include data on Treasury bills and secu-
rities with less than three months to maturity, and they use nonparametric
methods to estimate the constant-maturity zero coupon curve. Liu and Wu
(2021) emphasize that their estimates capture the local variation in maturi-
ties and have smaller pricing errors, especially at the short and long end of
the yield curve. We plot the annualized difference in forward rate estimates
in figure 13. They are often substantial, especially around the financial crisis

period.

18We thank an anonymous referee for encouraging us to use the Liu and Wu data.
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Some of the qualitative and quantitative conclusions of our estimation
differ between the two datasets. This is unsurprising, as the underlying yield
curve data are quite different, and this difference is somewhat magnified for
forward rates, particularly around the start of the Great Recession. Liu
and Wu find a similar result in the context of Cochrane and Piazzesi (2005)
regressions.

Rather than double the reported estimates, we summarize which con-
clusions are sensitive to the choice of zero-coupon yield curve data in this

section.

e Model fit and forecasting performance: Unsurprisingly, the non-
parametrically estimated yield curve is harder to match than the rel-
atively smooth GSW estimates. Using the GSW data, we found that
the EKF did a marginally better job fitting in-sample, but had worse
forecasting performance. The picture is more nuanced with the LW
data, which can be observed by comparing table 1 to appendix table

G.1. Using the LW data set, the performance for the EKF' is similar
to the best discretization-fllter estimates except at the 7- and 10-year
horizon, where the RMSE is 7 and 22 bp lower for the EKF (panel A in
the respective tables). Similarly, the average out-of-sample forecasting
performance is somewhat better for the discretization filter estimates
at the short end but not for the long end (panel B in each table). The
benefit of the short-end forecasts is especially apparent during the 2020-

2024 period (panel D). Some of the degradation of fit and forecasting
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performance is likely due to the greater variability of the yield curve.
On average, the 3 factor models estimated with the discretization filter

appear to perform well up through 2019 regardless of the data set.

Structural break tests and monetary policy VARs: Using GSW
data, we rejected the null of no structural break for most, but not all,
of our models (particularly, we failed to reject the null at for the PSS
2-factor model, and rejected it marginally for the KO 2-factor model).
Using the LW data, we get a similarly mixed pattern. We also find
that the shadow rates estimated with the EKF on the LW data do not

reject the null of no structural break.

Event analysis: In general, the estimates using LW attribute a greater
fraction of variation around the announcement of LSAPs and forward
guidance to risk premia, relative to those using GSW. In particular, the
change in expected duration of the ZLB around the forward guidance
announcement is greatly attenuated using the LW estimates. Figure 4,
for example, implies that that the largest jump in anticipated duration
of the ZLB around the forward guidance announcement was about 4
months; using the GSW data, the largest duration was about 9 months.
Similarly, we found a greater explanatory power for the expectations
hypothesis component of yields in the analysis of LSAPs using the GSW
data. The PSS 3-factor model implied more than 40% of the drop in

yields was due to changes in short rates, while using the LW data, that
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fraction is less than 20%. However, it is worth remembering that the
GSW short end is a parametric extrapolation, while the LW estimates
use near-to-maturity securities. This seems to make LW preferable for

the event analysis

Mean duration of ZLB Using the GSW yield curve estimates, we
found that real-time mean duration of the ZLB was similar to that
implied by the forward guidance from the SEP, except for one model
(KO3), whose duration estimates were generally longer. Using the LW
data, we get qualitatively different results. The three factor KO model
has wide confidence bands, but the median path diverges from the
SEP’s guidance. The PSS model over-estimates yields, but the im-
plied path of the “distorted” forecast path (which draws mainly on the

forecasts) is consistent with the SEP.

Effects of Treasury supply changes: Using GSW’s yield curve es-
timates, we find qualitatively and quantitatively different evidence on
the channels of asset purchases. Our estimates based on GSW imply
that local scarcity is only significant in half of the term premium re-
gressions. By contrast, the results in tables 3 and 4, which calculate
term premia and the yield curve’s slope using the Liu and Wu dataset,
suggest changes in local scarcity and duration are both statistically as-
sociated with changes in the term premium observed during the first

two LSAP rounds, in a way that is economically significant.
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8 Conclusion

Using data on forecasts and financial prices, we estimate shadow rates, in-
terest rate expectations, and term premia for US Treasury markets during
the zero lower bound period associated with the Great Recession. We extend
on previous work by fully estimating a nonlinear state space model, incorpo-
rating interest rate forecasts alongside forward rates, allowing for deviations
from full information rational expectations in those forecasts, and incorpo-
rating new yield curve estimates that incorporate more information from the
short end of the maturity spectrum. We find that forecasting performance
is often better using the discretization filter. Our recommendation for ap-
plied work, particularly work that focuses on in-sample properties of interest
rate expectations or term premia, would be to compare robustness across a
variety of both model assumptions and estimation methods.

Our goal in this paper has been to identify robust effects of monetary
policy at the zero lower bound and, additionally, to provide some guidance
for applied researchers who are interested in producing or using estimated

shadow rates. To summarize our conclusions:

1. The Farmer (2021) discretization filter appears to be an accurate and
computationally competitive alternative to the extended Kalman filter
for estimating shadow rate models that use the Wu and Xia (2016)

approximation for the ZLB.

2. Three factor models that incorporate financial forecast data appear to
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do the best job of actually capturing the relevant features of the yield

curve since 2007, relative to their two-factor or yields-only alternatives.

. The method of estimating shadow rates and the underlying data set
for yields, forecasts, and structural assumptions about forecasts will
materially affect the conclusions about the level of the shadow rate
and the expected duration of the ZLB, in practice. This is true despite
the fact that average fit or forecasting ability may be relatively similar
across different models. This may affect conclusions about whether
forward guidance was successful at shaping market forecasts or the
extent to which “unconventional” policy announcements affected yields

through expectations or term premia.

. Despite differences in underlying shadow rate estimates, many conclu-
sions about policy are qualitatively similar regardless of the shadow rate
model, or depend more on data choices than choices about estimation.

In particular:

(a) Conclusions about the effects of monetary policy in FAVARs de-
pend highly on the macroeconomic data, rather than the shadow

rate.

(b) The majority of the effect of the LSAP1 and LSAP2 announce-
ments was a change in term premia, regardless of how those term

premia are estimated.
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(¢) Reduced-form tests about the effects of duration versus local scarcity
for LSAPs depend on the yield data used to estimate them (and
underlying term premia). For estimates using Liu and Wu (2021)
yields, the effects of duration and local scarcity are both statis-
tically and economically significant regardless of term structure
model. This is not true for estimates using Giirkaynak et al. (2007)

yields.

In this paper, we focused mainly on the period prior to the COVID-19
pandemic. Our extension to that period revealed that models incorporating
forecast data performed better at predicting the data out-of-sample, and
that two-factor models with forecasts have trouble fitting both the financial
crisis and pandemic ZLB episodes. For applied work, we recommend authors
consider using estimated shadow rates informed by interest rate forecasts.

We have not closely investigated whether innovations to the shadow rate
were driven by particular factor innovations that can be linked to macroe-
conomic or financial developments. But our estimated factors are correlated
with macroeconomic indicators such as labor market variables; like interest
rate forecasts (Caldara et al. (2020)), forecasts of labor market variables were
also subject to substantial over-optimism and revision during the recovery
from the Great Recession. Accounting for variation in the yield curve using
a macro-factor structure and respecting the zero lower bound would be a

natural extension.
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9 Tables



Table 1: Table reports model fits.

sample before and after the COVID-19 pandemic.

Columns 1-6 report estimates for the
mean absolute error (MAE) and Columns 7-12 report estimates for the root-
mean-square error (RMSE) across models. Panel A contains estimates for
the in-sample fit that uses all observations (396 months). Panel B contains
estimates for the out-of-sample fit, which estimates the model each December
from 2007-2023, and calculates forecasts for 1- to 12-months ahead. Panels
C and D report subcomponents of the out-of-sample forecasts splitting the

MAE and RMSE are

reported across all horizons (10 sets of forecasts at 12 horizons each).

Statistic MAE RMSE
Model YO KO PS YO KO PS
Factors 2 3 2 3 2 312 3 2 3 2 3
Panel A: In-Sample Fit (N=396)
3mo 0.18 0.11 0.21 0.33 0.21 0.18]0.23 0.14 0.27 0.40 0.26 0.23
6mo 0.11 0.10 0.23 0.21 0.18 0.21]0.150.14 0.34 0.31 0.25 0.29
12mo  0.18 0.13 0.32 0.31 0.23 0.23|0.22 0.16 0.44 0.43 0.29 0.30
24mo  0.22 0.16 0.31 0.32 0.25 0.31]0.30 0.21 0.41 0.43 0.32 0.40
60mo  0.25 0.23 0.27 0.32 0.27 0.27]0.34 0.31 0.36 0.41 0.36 0.37
84mo  0.22 0.21 0.28 0.26 0.24 0.23]0.31 0.28 0.38 0.35 0.32 0.30
120mo  0.34 0.26 0.40 0.37 0.37 0.43]0.50 0.36 0.57 0.51 0.50 0.58
Panel B: Out-of-Sample Fit: 1-12 month-ahead forecasts (N=216)
3mo 0.56 0.48 0.50 0.40 0.47 0.34/0.92 0.97 0.95 0.68 0.82 0.73
6mo 0.55 0.51 0.57 0.33 0.45 0.29(0.89 0.92 0.97 0.63 0.79 0.65
12mo  0.56 0.44 0.62 0.37 0.47 0.34/0.80 0.67 0.92 0.60 0.69 0.59
24mo  0.56 0.85 0.57 0.42 0.58 0.46(0.72 1.45 0.79 0.54 0.83 0.59
60mo  0.66 1.62 0.57 0.52 0.97 0.61|0.83 2.51 0.74 0.64 1.23 0.77
84mo  0.81 1.98 0.97 0.54 1.37 0.62(1.02 3.00 1.11 0.69 1.64 0.84
120mo 1.01 2.01 1.30 0.72 1.42 0.77|1.24 3.02 1.52 0.86 1.69 0.90
Panel C: Out-of-Sample Fit, 2007-2019, 1-12 month-ahead forecasts (N=132)
3mo 0.38 0.22 0.31 0.29 0.30 0.21{0.57 0.35 0.47 0.36 0.41 0.32
6mo 0.37 0.20 0.39 0.23 0.32 0.18]0.54 0.33 0.56 0.30 0.44 0.30
12mo  0.42 0.25 0.47 0.23 0.34 0.23]0.57 0.36 0.65 0.31 0.42 0.31
24mo  0.53 0.33 0.52 0.32 0.38 0.41[0.72 0.49 0.76 0.39 0.54 0.48
60mo  0.74 0.53 0.56 0.50 0.70 0.63]0.90 0.67 0.73 0.63 0.87 0.82
84mo  0.98 0.66 0.90 0.63 0.99 0.67|1.17 0.82 1.06 0.78 1.18 0.93
120mo 1.17 0.71 1.15 0.75 1.07 0.77|1.39 0.86 1.38 0.90 1.30 0.93
Panel D: Out-of-Sample Fit, 2020-2023,-1-12 month-ahead forecasts (N=48)
3mo 0.19 0.12 0.27 0.32 0.15 0.05]0.24 0.14 0.45 0.36 0.21 0.06
6mo 0.24 0.11 0.39 0.13 0.12 0.09|0.31 0.15 0.60 0.17 0.19 0.11
12mo  0.34 0.20 0.60 0.14 0.19 0.18]0.45 0.29 0.85 0.18 0.26 0.22
24mo  0.52 0.44 0.93 0.30 0.41 0.33]0.70 0.63 1.18 0.39 0.55 0.44
60mo  0.77 0.61 0.66 0.54 0.67 0.59|0.88 0.77 0.89 0.69 0.80 0.82
84mo  0.63 0.58 0.65 0.53 0.60 0.64|078 0.74 0.88 0.73 0.73 0.87
120mo  0.75 0.59 0.78 0.59 0.58 0.67 [0.36 0.79 1.04 0.78 0.73 0.85




(a) Shadow rate estimated from 1987-2019

Wu and Xia 2016 0.289 1.000
YO 1.000 0.175
YO 2 factor 1.000 0.022
KO 0.047 1.000
KO 2 factor 0.017 1.000
PSS 0.139 1.000
PSS 2 factor 0.004 1.000

YO3 factor using EKF, LW data 0.999 0.538

(b) Discretization-filter based shadow rates estimated from 1987-2023

YO 1.000 0.166
YO 2 factor 1.000 0.007
KO 0.096 1.000
KO 2 factor 0.017 1.000
PSS 0.000 1.000

PSS 2 factor 0.006 0.566

Table 2: p-values for tests of a structural break in the FAVAR estimated in
Wu and Xia (2016), substituting different estimates of the shadow rate. In
each panel, the first column contains the p-values for the test of structural
break in effect of lagged shadow rate on macroeconomic factors, and the
second column contains p-values for test of structural break in effect of lagged
macroeconomic factors on shadow rate. The test is a likelihood ratio test
adjusting for small-sample bias as in Sims (1980), with a null is that there
are no structural breaks. In panel (a), the shadow rates estimated using the
discretization filter are estimated using yields data from 2019, while in panel
(b) the data goes to 2023. In both cases, the FAVAR itself is estimated from
1960-2013 using identical data as Wu and Xia (2016) other than the shadow
rate during the ZLB period.
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10 Figures
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Figure 1: Estimated impulse response of the shadow rate s; to a 1-standard
deviation shock to each latent factor under physical and subjective (distorted)
dynamics for the estimated PSS models. The red line shows the evolution of
the shadow rate using the physical estimated physical dynamics, while the
blue line shows the evolution using the subjective dynamics. Panel (a) shows
the results for the two-factor PSS model; Panel (b) shows the three-factor
PSS model.
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Figure 2: Smoothed estimates of shadow rate during/post Great Recession,
with event dates (three rounds of Large Scale Asset Purchases (LSAPs), the
introduction of calendar-based forward guidance and the Maturity Extension
Program (FG+MEP), Taper Announcement). FG and MEP were introduced
in August and September 2011, respectively, but are shown in August 2011.
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Figure 3: Real-time implied mean duration of ZLB period. Bands indicate
99th percentile of liftoff dates.
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as those in Figure 3.
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Figure 5: Estimated impulse response of unemployment to a 25 basis point
decrease in the policy rate (Federal funds rate/shadow rate). Solid lines
indicate median response and bands indicate 90% confidence intervals. Black
is the impulse response reported in Wu and Xia (2016) and blue indicates
estimates with shadow rates estimated with the discretization filter. The

model is estimated as a FAVAR(1) using the “post-crisis” specification and
data in Wu and Xia.
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Figure 6: Estimated impulse response of unemployment and inflation to a 25
basis point decrease in the policy rate (Federal funds rate/shadow rate). Solid
lines indicate median response and bands indicate 90% confidence intervals.
Impulse responses are estimated using a FAVAR(13) estimated using data
from 1987-2019. The difference across columns is the underlying estimate
of the shadow rate. “WX (2016)” indicates the original impulse response
reported in Wu and Xia (2016); “WX (updated)” uses the most recent vintage
of data as of December 2024. “EKF” is the YO3 factor model estimated using
Liu and Wu (2021) yields and the extended Kalman filter.

62



wx (2016) || wx(pdate) || vos || kos |[ psss |[ ExF
0.00
0.051 {
o
o
0.101 5
<
3
0.15 1 7
0201
-0.25 - —
0.0 \¥
T 051
8 3
= o
o 10
151
C
=)
3
0.1 =1
()
~<
3
(0]
3
021 5
(0]

24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 96 24 48 72 96
horizon

Figure 7: Estimated impulse response of unemployment and inflation to a 25
basis point decrease in the policy rate (Federal funds rate/shadow rate). Solid
lines indicate median response and bands indicate 90% confidence intervals.
Impulse responses are estimated using a FAVAR (1) estimated using data from
July 2009-December 2019. The difference across columns is the underlying
estimate of the shadow rate. “WX (2016)” indicates the original impulse
response reported in Wu and Xia (2016); “WX (updated)” uses the most
recent vintage of data as of December 2024. “EKF” is the YO3 factor model
estimated using Liu and Wu (2021) yields and the extended Kalman filter.
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Figure 8: Decomposition of the 10-year U.S. Treasury yield (black line) dur-
ing the ZLB. The Expectations Hypothesis component of the 10-year yield
is shown for the YO (blue line), KO (red line), and PSS (green line) models.
Results for the two-(three-)factor model are in the upper (lower) panel.
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Figure 9: Decomposition of the change in the 10-year U.S. Treasury yield
(black line) during specific ZLB dates. All measures are shown related to
the month preceding the following events: LSAP1 (November 2008), LSAP2
(August 2010), the introduction of calendar-based forward guidance (FG)
(July 2011). The change in the Expectations Hypothesis component of the
10-year yield is shown for the three-factor YO (blue line), KO (red line), and
PSS (green line) models. Results for the two-(three-)factor model are given
by dashed (solid) lines.
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Figure 10: Smoothed estimates of effective federal funds rate and shadow

rate estimates during and after the COVID-19 recession. YO3 is not reported
since it is never negative.
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Figure 11: Liu and Wu (2021) zero coupon yield curve estimates, 2006-2023.
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Figure 12: Real-time implied mean duration of ZLB period during and fol-
lowing the COVID-19 pandemic. Bands indicate 99th percentile of liftoff
dates. Dashed lines indicate forward guidance implied by median respon-
dent to FOMC Statement of Economic Projections.
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Figure 13: Difference in forward rates (annualized percentage points) for Liu
and Wu (2021) zero coupon yield curve estimates relative to Giirkaynak et al.
(2007) estimates.
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A Explicit expressions from the Wu-Xia shadow

rate model

We include the complete expression for the recursions in Wu and Xia

(2016). Interested readers should refer to their paper for a complete deriva-

tion.

n—1
=G0+ 61 (%) u® (20)

k=0
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B Examining beliefs during the ZLB period

and the usefulness of forecast data

Hamilton (2018) argues that event-study estimates of the impact of mon-
etary policy actions make it difficult to separately identify the pure effects of

LSAPs from informational effects. For example, figure B.1 shows the yield
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curve on US Treasuries at the end of day on March 17, 2009 and March 19,
2009. On March 18, 2009, the FOMC announced it would be maintaining
a target for the Federal Funds rate at 0-25 basis points for an “extended
period” and expanded the scale of LSAPs.!® The shift in the long end of the
yield curve conflates this news about short term interest rates and economic
conditions which affect risk premia.

In principle, shadow rate models allow for the separation of these forces
by identifying the pure EH component of yields separately from risk pre-
mia, even when short term interest rates are stuck at or near the zero lower
bound. Forecasts are potentially an additional source of information about
expectations. Because the decision to use forecast data is not innocuous (see
Li et al. (2017)), it is worth briefly rationalizing our approach.

First, the Blue Chip panelists are primarily private sector forecasters, and
policymakers frequently make use of the Blue Chip surveys as an indicator
of market expectations that are free of effects from priced risk premia, both
in public speeches (see, for example, Clarida (2019)) and internally as a

benchmark (D’Amico et al. (2013), Cieslak (2018)). This is consistent with

19The March 18 2009 FOMC statement included the following language: “The Com-
mittee will maintain the target range for the federal funds rate at 0 to 1/4 percent and
anticipates that economic conditions are likely to warrant exceptionally low levels of the
federal funds rate for an extended period. To provide greater support to mortgage lending
and housing markets, the Committee decided today to increase the size of the Federal
Reserve’s balance sheet further by purchasing up to an additional $750 billion of agency
mortgage-backed securities, bringing its total purchases of these securities to up to $1.25
trillion this year, and to increase its purchases of agency debt this year by up to $100 bil-
lion to a total of up to $200 billion. Moreover, to help improve conditions in private credit
markets, the Committee decided to purchase up to $300 billion of longer-term Treasury
securities over the next six months.”
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Figure B.1: US Treasury yield curve on March 17 (dashed) and March 19
(circles), 2009. Data from Liu and Wu (2021).

their use in other shadow rate studies; for example, Bauer and Rudebusch
(2016) verify their model-based forecasts are sensible by comparing them to
surveys.

Second, graphical evidence suggests that forecasts for short-term bond
yields — which one might expect have relatively small, if any, risk premia
— are reasonably close to what would be implied by prices. For instance,
figure B.2 compares the yield on a 12-month zero coupon Treasury bond to
the average expected short-term interest rate over the next 12 months. In
general, the forecasts are consistent with prevailing prices.

Third, and most importantly, our approach in this paper is neither to
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Figure B.2: Yields on 12 month Treasuries (solid line) and average expected
short rates of 12 month Treasuries from the Blue Chip Financial Survey
(circles). 12 month Treasury yields from Liu and Wu (2021).

ignore forecasts or assume they are the same as market expectations. We
estimate several models that allow for surveys to be identified with traders
directly (a-la Kim and Orphanides (2012)), as well as allowing for interest
rate forecasts from surveys to be related to those implied by yields but pos-
sibly distorted (as in Piazzesi et al. (2015)). Allowing for distortion may be
important given a large literature (e.g. Coibion and Gorodnichenko (2015))
which has demonstrated professional forecasts often significantly deviate from
the FIRE benchmark.

To test for the existence of distorted beliefs in Blue Chip short-rate fore-
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casts, we regress future forecast errors on revisions of the same forecast (as
in Coibion and Gorodnichenko (2015)) in each month. Define E;[Ftin—2¢4n]
to be the consensus forecast made in month ¢ of the average level of short

rates between months t + n — 2 and t + n.%°

Because Additionally, call
FEy(Tr4n) = Tt4n — Et[Ftin—244n) the forecast error from month ¢ to month
t+n and FR(Fiin) = Et[Tiin—244+n) — Eto1[Fign—2.4n] the forecast revision

between months ¢ — 1 and ¢.

We regress forecast errors across horizons n on forecast revisions:

FE(Tyin) = a(n) + B(n)FRy(Tiyn) + €11n (23)

Under the null hypothesis of FIRE, rational expectations errors would be
unpredictable (5(n) = 0) as would be efficiently incorporating all information
available at t. However, as the results in figure B.3 suggest, such errors can
be predicted using revisions to forecasts from time ¢ — 1 to t. This effect is
nearly always significant at the 95% level. The results imply that knowing
forecasts for the next quarter had been revised upward by 25 basis points
between the first and second month of the current quarter implies a likely
underestimate of the actual average 3-month rate by around 25 basis points
(despite the upward revision). This economically and statistically significant
result is inconsistent with FIRE.

While we believe surveys are a source of information about the beliefs of

traders, we are cognizant that there is a possible tension in (1) treating them

20Further details of the construction of Blue Chip forecasts are provided in appendix C.
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as FIRE and (2) identifying them with traders’ beliefs. Since the literature
has not reached a consensus, we examine whether our results are robust to
assuming forecasts are FIRE or perhaps generated by a distorted belief about

the underlying state.

C Incorporating the Blue Chip Financial Fore-

casts Survey into the structural estimates

The Blue Chip Financial Forecasts survey has been conducted at a monthly
frequency since 1982. Survey participants are asked for their quarterly av-
erage forecasts of a range of financial-market variables at horizons of 1- to
5-quarters ahead (6-quarters ahead beginning in 1997).2! The analysis in this
paper utilizes forecasts of 3-month Treasury bill constant-maturity yields,
which proxies for the risk-free short-term interest rate.

The Blue Chip survey is generally published on the first day of each
month. However, forecasters complete the survey over a two-day period in
the prior week. We follow Cieslak (2018) and choose the “survey date” to
be the earliest business day in the range of the 23rd-27th of the month for
January through November and the 17th-20th for December. Yields used
in estimation are selected on those dates to correspond with the forecasters’
true information set.

Current-quarter forecasts published in the second and third months of

2IThe Blue Chip also publishes long-horizon forecasts semi-annually, which we do not
utilize due to the sparse time series.
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a quarter already contain past realizations of yields. To address this issue,
we adjust forecasts for prior yields within a given quarter.?? Consider the
case of Q1 forecasts published in February. These forecasts reflect interest
rates that already occurred in January. We calculate a forward-looking fore-
cast by subtracting the average of 3-month interest rates (taken from the
Fed’s H.15 release) over the first three weeks of January. The two-month
ahead forecast then equals E;[F 11 ¢42] = (3 X E¢[Fi+40] — 7¢)/2. Now consider
the case of Q1 forecasts published in March, which are made in February.
These forecasts reflect interest rates that already occurred in January and
the first three weeks of February. The one-month ahead forecast subtracts
the monthly average of yields in January and the average of the first three
weeks of February: E;[fii1] = 3 X E¢[Fr—14+1] — 7+ — 7—1. In both cases, the
average of the first three weeks of the month is assumed to be approximately

equals to the monthly average.

22This procedure is identical to Xu (2019), except that we use a slightly different forecast
horizon convention.
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Figure B.3: Each line represents confidence intervals for coefficient estimates
of forecast error on forecast revision as in equation (23), by forecast horizon
and month within the quarter.
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D Parameter estimates and model fit

This appendix first presents tables of the parameter estimates for each
model. Following that, figure D.1 plots the average fit for the yield curve
during the zero lower bound period. The top figure shows results for two-
factor models, while the bottom shows results for three-figure models. The
average yield curve implied by the model is shown by the individual markers,

while the actual yield curve is plotted as a solid line.
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1200 -0.3432  -0.2369  0.0310
(0.0231)  (3.6536)  (0.3069)
p 0.9638  -0.0069  0.5228

(0.1366)  (1.3324)  (18.1090)
0.0225  0.9385 1.0152
(0.4016)  (1.6757)  (48.6500)
0.0031 0.0028 0.8708
(0.0422)  (0.1105)  (2.3400)

diag(pQ) 0.9978 0.9526 0.9586
(0.0282)  (0.5029)  (0.6506)
12005 0.2938
(5.2643)

-0.1789  0.2109
(4.1672)  (2.5707)
-0.0082  0.0032 0.0329
(0.1417)  (0.2507)  (0.4953)

1200 r 0.2500
(1.8187)
1200 9 13.5658
(37.3359)
1200 (yield meas. err)  0.6667
(0.7202)
Log Likelihood 17647.7522

Table D.1: Estimated parameters for 3 factor model without forecasts (YO
model). QMLE standard errors in parentheses
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12004 -0.3043  0.0002
(0.0000)  (0.0000)
p 0.9693  0.0797

(0.0000)  (0.0000)
-0.0171  0.8880
(0.0000)  (0.0000)

diag(pQ) 0.9931  0.9793
(0.0000)  (0.0000)
12005 0.8677  0.0000

(0.0000)  (0.0000)
-0.6246  0.5324
(0.0000)  (0.0000)

1200 r 0.2111
(0.0000)
1200 9 10.2188
(0.0000)
1200 (yield meas. err)  0.5423
(0.0000)

Log Likelihood 17842.4535

Table D.2: Estimated parameters for 2 factor model without forecasts (YO
model). QMLE standard errors in parentheses
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12004 0.0578  -0.0487  0.0253
(0.5868)  (0.9084)  (0.0339)
P 0.9888  0.0183  -0.1387

(0.0885)  (0.1027)  (2.5589)
-0.0029  0.9793  -0.2899
(0.0642)  (0.4759)  (3.6838)
0.0019  0.0117  0.8643
(0.0059)  (0.0761)  (0.8439)

diag(pQ) 0.9956  0.9615  0.8591
(0.0045)  (0.0949)  (0.4511)
12005 0.3823
(0.6024)

-0.3718  0.3891

(0.1596)  (0.9604)

-0.0263  -0.0017  0.0125
(0.1055)  (0.0124)  (0.2534)

1200 r 0.1669
(2.0782)

1200 9 10.0723
(5.0516)

1200 (yield meas. err)  1.4327
(1.7711)

1200 (fcst meas. err)  1.3394
(1.4785)

Log Likelihood 29007.0952

Table D.3: Estimated parameters for 3 factor model including forecasts (KO
model). QMLE standard errors in parentheses
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1200 02730 0.0818
(0.1037)  (0.7580)
p 0.9537  0.0145

(0.0183)  (0.0485)
0.0225  0.9179
(0.1165)  (0.1584)

diag(p?) 0.9942 0.9758
(0.0029)  (0.0088)
1200% 0.5960
(0.4049)

04729  0.4948
(0.3337)  (0.1461)

1200 1 0.1224
(0.0504)

1200 9 10.1321
(0.1900)

1200 (yield meas. err)  0.9494
(1.8260)

1200 (fest meas. err)  0.6446
(1.1019)

Log Likelihood 31343.3806

Table D.4: Estimated parameters for 2 factor model including forecasts (KO
model). QMLE standard errors in parentheses
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1200 02289 -0.0220  0.0594
(0.1187)  (0.1608)  (0.0075)
p 0.9838  0.0074  0.3458

(0.0000)  (0.0026)  (0.5633)
0.0001 09114  0.0521
(0.0008)  (0.0256)  (0.2183)
0.0018  0.0056  0.8655
(0.0064)  (0.0129)  (0.0017)

diag(p?) 0.9958 09228  0.8537
(0.0027)  (0.0625)  (0.2167)
12005 0.5002
(0.7863)

-0.3072  0.3696
(0.0261)  (0.0725)

-0.1043  -0.0557  0.0974
(0.4335)  (0.0399)  (0.2302)

1200 1 0.1741
(0.1027)
1200 &, 10.0292
(1.5995)

k 18.7778  14.8334  -90.4622

(0.0018)  (0.0016)  (0.0002)

64.2452  -67.9476 94.2916

(0.0012)  (0.0001)  (0.0006)

4.4544 60.4822 94.2916

(0.0007)  (0.0003)  (0.0006)
1200 (yield meas. err)  1.0907

(1.3479)
1200 (fcast meas. err)  0.8522
(0.9588)

Log Likelihood 30560.2868

Table D.5: Estimated parameters for 3 factor model with distorted forecaster
dynamics (PSS model). QMLE standard errors in parentheses
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eig(p — Xk) 0.9930
0.9353
0.8382

Table D.6: Subjective physical dynamics, 3 factor PSS model

12004 -0.0319  -0.1410
(0.0151)  (0.0110)
p 0.9571 0.0505

(0.0220)  (0.0553)
0.0282 0.9144
(0.0496)  (0.0877)

diag(p?) 0.9961 0.9660
(0.0052)  (0.0053)
12005 0.5174
(0.4285)

04412 0.5980
(0.4593)  (0.0352)

1200 r 0.2051
(0.0532)
1200 & 10.1156
(3.1573)

k 04713 -27.7791

(0.6283)  (8.1201)

19.9101 47.5442

(27.3278)  (84.2557)
1200 (yield meas. err)  0.9272

(1.3466)
1200 (fcast meas. err)  0.8635
(1.0583)

Log Likelihood 30931.7551

Table D.7: Estimated parameters for 2 factor model with distorted forecaster
dynamics (PSS model). QMLE standard errors in parentheses

eig(p — Xk) 0.9699
0.8678

Table D.8: Subjective physical dynamics, 2 factor PSS model
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Figure D.1: Average fit of 2-figure (top) and 3-figure (bottom) model across
years, using smoothed state estimates. Line indicates average yield curve in
the indicated year.
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E Variance decomposition of yields

In this appendix, we report the variance decomposition of yields across
models and horizons. All of the models imply that the variation in short-
maturity yields is due to expectations of future short-term rates. However,
the YO and two-factor KO models attribute relatively more of the variation
in medium- and long-term yields to the term premium component than the
other models. The PSS models and three-factor KO model cannot distinguish
between these two components for long-maturity bonds. The difference in
results across models emphasizes that these decompositions are sensitive to
the underlying structural model and the presence of survey forecasts in the

estimation.
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Figure E.1: Decomposition of unconditional variance of the level of yields into
Term Premium and Expectations Hypothesis components for yields only, KO,
and PSS models for the full sample (1987-2018). Newey-West 99% confidence
bands are shown for point estimates. Maturity is reported in months.

101



Appendix — for online publication

YO 3-factor YO 2-factor
1.5 1.5
2 2
g 1 E
@ r . === @
g sk e g
& T ST == &
2 0 2 0
8 8 Term Premium
Expectations Hypothesis
-0.5 -0.5
0 50 100 0 50 100
maturity maturity
KO 3-factor KO 2-factor
1.5 1.5
£ £
< <
7 7
<] <]
Q Q
g g
& &
~ ~
g g
1S 1S
o o
-0.5 -0.5
0 50 100 0 50 100
maturity maturity
PSS 3-factor PSS 2-factor
1.5 1.5
(] (]
~ ~
15 15
= =
wn wn
[0} [0}
Q Q
g g
8 8
z z
g g
o o
-0.5 -0.5

50
maturity

100

50 100
maturity

Figure E.2: Decomposition of unconditional variance of the change in yields
into Risk Premium and Expectations Hypothesis components for yields only,
KO, and PSS models for the ZLB sample (1987-2018). Newey-West 99%
confidence bands are shown for point estimates. Maturity is reported in
months.
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F Two and three factor results

In this appendix, we report analogous results for both two- and three-

factor models for policy applications.

FG + MEP
LSAP2 Taper Announcement

Percent

2010 2012 2014 2016
Date

EFFR === Yields Only = KO = PSS

== WX == Yields Only (2 factor) = = KO 2 Factor = = PSS 2 factor

Figure F.1: Smoothed estimates of shadow rates for both two- and three-
factor models during/post Great Recession, with event dates (three rounds
of Large Scale Asset Purchases (LSAPs), the introduction of calendar-based
forward guidance and the Maturity Extension Program (FG+MEP), Taper
Announcement). FG and MEP were introduced in August and September
2011, respectively, but are shown in August 2011.
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Figure F.2: Real-time implied mean duration of ZLB period. Bands indicate
99th percentile of liftoff dates.
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Figure F.3: Real-time implied mean duration of 2011 using the same esti-
mates as those in Figure 3.
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Figure F.4: Smoothed estimates of effective federal funds rate and shadow
rate estimates during and after the COVID-19 recession.
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Figure F.5: Estimated impulse response of unemployment to a 25 basis point
decrease in the policy rate (Federal funds rate/shadow rate). Solid lines in-
dicate median response and bands indicate 90% confidence intervals. The
difference across columns is the underlying estimate of the shadow rate.
“WX (2016)” indicates the original impulse response reported in Wu and
Xia (2016); “WX (updated)” uses the most recent vintage of data as of De-
cember 2024. “EKF” is the YO3 factor model estimated using Li and Wei
(2013) yields and the extended Kalman filter.
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G EKF estimates

In this section, we include comparisons between our results and ones
estimated with the extended Kalman filter. We focus on a three-factor,
yields-only model. Unlike the main results in the paper, but like Wu and Xia
(2016), we use annualized yields data for the EKF exercises (as opposed to
estimating on un-annualized data and then annualizing after the fact).

We compare four different sets of results. First, we employ the same
procedure as is used for the discretization filter — global minimization without
constraining the lower bound of the short rate r. We then restrict r = 0.25
as in Wu and Xia (2016), but use global search and the complete dataset
as in the previous case. We then use the same local search and the same
data as Wu and Xia (2016), but using smoothed state estimates. Finally, we
include the results obtained from Wu and Xia (2016)’s code. Average fits
for each model during the ZLB period (within the sample used to estimate)
are shown in figure G.1. Within the period 2009-2012 (when all four sets of
models are on equal footing), no model is clearly superior.

The estimated shadow rates (along with the Wu and Xia (2016) shadow
rate) are shown in figure G.2. Here, global search with an unrestricted ZLB
yields nonsensical estimates for the shadow rate (that are positive when the
rate was constrained). Calibrating the lower bound as in Wu and Xia (2016)
gives an estimated path more similar to theirs. The differences between

the green and black shadow rates are attributable to differences between
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Figure G.1: Predicted and actual forward curves for 3 factor YO model
estimated with extended Kalman filter. Blue line: Giirkaynak et al. (2007)
forward rate curves. Square: estimated with global search and without fixing
r. Triangle: Global search with r = 0.25. Circle: local search with r = 0.25.
Plus sign: Results from Wu and Xia (2016).

smoothed and filtered estimates and the computing environment. Turning
to the duration plot (figure G.3), we see that both the sets of global search
results give extremely long implied horizons for the ZLB, while the local
search is slightly more consistent with Wu and Xia (2016). Notably, neither
set of "local’ results is completely consistent with the calendar-based forward
guidance provided by the FOMC, although the WX results are closer.

For the remainder of the comparison, we focus on comparing our main
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Figure G.2: Estimated shadow rates from 3 factor YO model estimated with
extended Kalman filter. Blue: estimated with global search and without
fixing r. Red: Global search with r = 0.25. Green: local search with r = 0.25.
Black: Results from Wu and Xia (2016).
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Figure G.3: Implied duration of ZLB from 3 factor YO model estimated
with extended Kalman filter. Blue circle: estimated with global search and
without fixing r. Red triangle: Global search with r = 0.25. Green square:
local search with r = 0.25. Black plus sign: Results from Wu and Xia (2016)
based on simulation. The black dashed corridor is the implied range of liftoff
dates based on the FOMC SEP as described in the main text.
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results with EKF results estimated using global methods and a fixed lower
bound at r = .25. We report the in-sample fitting error in panel A of table
G.1. Compared to the results in panel A of table 1, the fitting errors are
Smaller, with the difference being largest at the long end of the yield curve
(22 bp). On the other hand, we achieve reasonably similar average fits despite
the grid approximation method of the discretization filter, particularly at the
short end. . This suggests that the in-sample fit of the DF does not suffer
much due to approximating on a grid.—

Next we turn to the pseudo-out-of-sample fit. Here, the EKF model
outperforms the YO3 model on average, although the gains are marginal at
the short end. During the COVID period, the YO three-factor model does
better for short horizons and similarly at long horizons. The performance of
the models with forecasts at the short end is superior for both the sub-periods

of the forecasting exercise.
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Table G.1: Table reports model fits for models estimated using the Extended
Kalman Filter as described in the text. The first column reports mean abso-
lute error (MAE) while the second column reports RMSE. Panel A contains
estimates for the in-sample fit that uses all observations (396 months). Panel
B contains estimates for the out-of-sample fit, which estimates the model
each December from 2007-2023, and calculates forecasts for 1- to 12-months
ahead. Panels C and D report subcomponents of the out-of-sample forecasts
splitting the sample before and after the COVID-19 pandemic. MAE and
RMSE are reported across all horizons (10 sets of forecasts at 12 horizons
each).

Statistic MAE RMSE
Panel A: In-Sample Fit (N=396)

3mo 0.12 0.14

6mo 0.06 0.09
12mo 0.11 0.15
24mo 0.12 0.16
60mo 0.15 0.19
84mo 0.15 0.21
120mo 0.10 0.14

Panel B: Out-of-Sample Fit: 1-12 month-ahead forecasts (N=180)

3mo 0.31 0.60

6mo 0.33 0.62
12mo 0.37 0.60
24mo 0.42 0.56
60mo 0.49 0.68
84mo 0.52 0.71
120mo 0.51 0.68
Panel B: Out-of-Sample Fit, 2007-2019, 1-12 month-ahead forecasts (N=132)
3mo 0.20 0.31

6mo 0.21 0.33
12mo 0.25 0.34
24mo 0.34 0.45
60mo 0.49 0.67
84mo 0.55 0.76
120mo 0.53 0.70
Panel B: Out-of-Sample Fit, 2020-2023,-1-12 month-ahead forecasts (N=48)
3mo 0.31 0.60

6mo 0.33 0.62
12mo 0.37 0.60
2mo  0.42 113 0.56
60mo 0.49 0.68
84mo 0.52 0.71

120mo 0.51 0.68
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H Additional figures from COVID-19 period

This appendix contains parameter estimates and measures of model fit

for each model when we extend the estimation period to the end of 2023.
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12004 0.0597  -0.2151  0.2046
(3.2668)  (0.0061)  (6.8541)
p 0.9132 0.0127  -0.0267

(0.4008)  (0.0594)  (0.3640)
-0.0862  0.9088  -0.0476
(1.0136)  (1.0024)  (0.1787)
0.5249 04330  0.9143
(6.7627)  (6.1827)  (0.1319)

diag(p?) 0.8985 0.9243  0.9428
(0.6319)  (0.0466)  (0.0324)
12005 0.4249
(2.9425)

0.1358  0.6236
(1.7546)  (0.9734)

04900  0.4665  0.6459
(0.5240)  (0.7956)  (0.9900)

1200 r -0.2403
(3.8958)
1200 6o 13.5130
(12.8653)
1200 (yield meas. err)  2.8574
(6.5310)
Log Likelihood 14689.9476

Table H.1: Estimated parameters for 3 factor model without forecasts (YO
model). QMLE standard errors in parentheses
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12004 0.1974  -0.2251
(0.0000)  (0.0000)
p 0.9448  0.0329

(0.0000)  (0.0000)
0.0548  0.8500
(0.0000)  (0.0000)

diag(p?) 0.9980  0.9531
(0.0000)  (0.0000)
12005 0.5523  0.0000

(0.0000)  (0.0000)
-0.3358  0.5556
(0.0000)  (0.0000)

1200 r 0.2314
(0.0000)
1200 9 11.0194
(0.0000)
1200 (yield meas. err)  0.5890
(0.0000)

Log Likelihood 19488.0762

Table H.2: Estimated parameters for 2 factor model without forecasts (YO
model). QMLE standard errors in parentheses
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12004 0.0582  -0.0479  0.0488
(0.2308)  (0.1663)  (0.0014)
p 0.9893 0.0162  -0.0127

(0.0146)  (0.0150)  (0.0414)
-0.0024 09796  -0.2913
(0.0179)  (0.1264)  (0.9352)
0.0075 0.0140  0.8695
(0.0134)  (0.0395)  (0.0494)

diag(p?) 0.9960 0.9616  0.8586
(0.0058)  (0.0383)  (0.0876)
12005 0.3824
(0.0452)

-0.3702  0.3727
(0.1154)  (0.1200)

-0.0238  -0.0027  0.0100
(0.0832)  (0.0163)  (0.0350)

1200 r 0.2847
(0.0749)

1200 9 10.0468
(11.5554)

1200 (yield meas. err)  1.3493
(1.7248)

1200 (fcst meas. err) 1.2400
(1.4425)

Log Likelihood 32923.7398

Table H.3: Estimated parameters for 3 factor model including forecasts (KO
model). QMLE standard errors in parentheses
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1200 02730 0.0818
(0.6159)  (0.9105)
p 0.9537  0.0145

(0.1030)  (0.1802)
0.0225  0.9179
(0.1536)  (0.6665)

diag(p?) 0.9942 0.9758
(0.0033)  (0.0572)
1200% 0.5960
(0.1927)

-0.4720  0.4948
(0.1978)  (0.4130)

1200 1 0.1224
(0.5777)

1200 9 10.1321
(0.9655)

1200 (yield meas. err)  0.9494
(1.0457)

1200 (fest meas. err)  0.6446
(0.8210)

Log Likelihood 35157.4959

Table H.4: Estimated parameters for 2 factor model including forecasts (KO
model). QMLE standard errors in parentheses
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12004 -0.0351  -0.1054  -0.0943
(0.2585)  (0.6623)  (0.2894)
p 0.9157 0.0380  -0.0075
(0.4349)  (0.1263)  (0.0257)
0.2138 0.8799  -0.0303
(0.8587)  (0.1907)  (0.0736)
01754  -0.0355  0.8502
(0.0936)  (0.1847)  (0.1174)
diag(pQ) 0.9999 0.9613 0.9468
(0.0102)  (0.0044)  (0.0157)
12005 0.2429
(1.2436)

-0.4031 0.5716
(2.6091)  (0.0659)

0.0274 0.1088 0.2250
(0.2231)  (0.2740)  (0.3756)

1200 0.4961
(0.4035)
1200 & 10.0084
(0.4093)

k -69.1248  -64.9436  -53.6921

(80.0687)  (78.2228)  (63.1861)
6.2826 21.9106 -13.4181
(14.4430)  (37.5347)  (72.4396)
-58.8692 -45.0318 -13.4181
(11.0421)  (10.1943)  (72.4396)
1200 (yield meas. err)  2.6259

(4.8342)
1200 (fcast meas. err)  0.7964
(1.1710)

Log Likelihood 31592.0330

Table H.5: Estimated parameters for 3 factor model with distorted forecaster
dynamics (PSS model). QMLE standard errors in parentheses
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eig(p — Xk) 0.7544
0.9845
0.8936

Table H.6: Subjective physical dynamics, 3 factor PSS model

12004 -0.5000  0.0584
(0.2669)  (0.0576)
p 0.9707  -0.0149

(0.0101)  (0.0343)
0.0016 0.9303
(0.0114)  (0.0674)

diag(p?) 0.9947 0.9685
(0.0009)  (0.0357)
12005 0.6616
(0.0379)

0.0226 0.9699
(0.0950)  (0.0755)

1200 r 0.5000
(0.5455)
1200 & 16.6512
(3.9729)

k -31.5626  -40.9760

(28.3081)  (30.9323)

37.6006 -13.8504

(30.9087)  (31.0041)
1200 (yield meas. err)  1.1259

(1.6982)
1200 (fcast meas. err)  0.9111
(1.2025)

Log Likelihood 33854.8993

Table H.7: Estimated parameters for 2 factor model with distorted forecaster
dynamics (PSS model). QMLE standard errors in parentheses

eig(p — Xk) 0.9827
0.9477

Table H.8: Subjective physical dynamics, 2 factor PSS model
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Figure H.1: Average fit of 2-figure (top) and 3-figure (bottom) model across
years for extended sample, using smoothed state estimates. Line indicates
average yield curve in the indicated year.
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